翻訳と辞書
Words near each other
・ Wealth tax
・ Wealth Tax Act, 1957
・ Wealth Transfer Group
・ Wealth Without a Future
・ Wealth Won't Save Your Soul
・ Wealth, Virtual Wealth and Debt
・ Wealthfront
・ Wealthiest Americans (1957)
・ WealthTrust
・ Wealthwood Township, Aitkin County, Minnesota
・ Wealthwood, Minnesota
・ Wealthy (apple)
・ Weak convergence
・ Weak convergence (Hilbert space)
・ Weak derivative
Weak dimension
・ Weak duality
・ Weak entity
・ Weak equivalence
・ Weak equivalence (homotopy theory)
・ Weak evolutionarily stable strategy
・ Weak focusing
・ Weak form and strong form
・ Weak formulation
・ Weak generative capacity
・ Weak gravitational lensing
・ Weak Hausdorff space
・ Weak heap
・ Weak Hopf algebra
・ Weak hypercharge


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Weak dimension : ウィキペディア英語版
Weak dimension
In abstract algebra, the weak dimension of a nonzero right module ''M'' over a ring ''R'' is the largest number ''n'' such that the Tor group Tor(''M'',''N'') is nonzero for some left ''R''-module ''N'' (or infinity if no largest such ''n'' exists), and the weak dimension of a left ''R''-module is defined similarly. The weak dimension was introduced by . The weak dimension is sometimes called the flat dimension as it is the shortest length of a resolution of the module by flat modules. The weak dimension of a module is at most equal to its projective dimension.
The weak global dimension of a ring is the largest number ''n'' such that Tor(''M'',''N'') is nonzero for some right ''R''-module ''M'' and left ''R''-module ''N''. If there is no such largest number ''n'', the weak global dimension is defined to be infinite. It is at most equal to the left or right global dimension of the ring ''R''.
==Examples==

The module Q of rational numbers over the ring Z of integers has weak dimension 0, but projective dimension 1.
A Prüfer domain has weak global dimension at most 1.
A Von Neumann regular ring has weak global dimension 0.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Weak dimension」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.